Tuesday, August 25, 2009

PEMBUATAN CuSO4.5H2O

MAKING OF CuSO4.5H2O

ANNISA SYABATINI

SINTESIS CuSO4.5H2O

ABSTRAK

Tujuan dari percobaan ini adalah membuat dan mengenal sifat kristal tembaga (II) sulfat, memahami proses pembentukan kristal. Tembaga (II) sulfat, campuran kimia dengan rumus CuSO4. Garam ini ada sebagai rangkaian campuran yang berbeda di dalam derajat tingkat hidrasi mereka. Tembaga (II) sulfat berbentuk serbuk, manakala tembaga (II) sulfat terhidrat berwarna biru terang. Nama kuno bagi tembaga (II) sulfat ialah vitriol biru. Kebanyakan kuprum sulfat wujud dalam alam semulajadi dalam bentuk pentahidrat (CuSO4·5H2O). Mineral ini dikenali sebagai kalkantit. Tembaga (II) sulfat mengurai sebelum melebur. Bentuk pentahidrat yang lazim terhidratnya, yaitu kehilangan empat molekul airnya pada 110 °C dan kelima-lima molekul air pada 150 °C. Pada 650 °C, tembaga (II) sulfat mengurai menjadi tembaga (II) oksida (CuO), sulfur dioksida (SO2) dan oksigen (O2).

Kata Kunci : tembaga (II) sulfat, vitriol biru

PEDAHULUAN


Dalam suatu Sistem Periodik Unsur (SPU), tembaga (Cu) termasuk ke dalam golongan 11. Tembaga, perak dan emas disebut logam koin karena dipakai sejak lama sebagai uang dalam bentuk lempengan (koin). Hal ini disebabkan oleh logam ini tidak reaktif, sehingga tidak berubah dalam waktu yang lama. Tembaga adalah logam berdaya hantar listrik tinggi, maka dipakai sebagai kabel listrik. Tembaga tidak larut dalam asam yang bukan pengoksidasi tetapi tembaga teroksidasi oleh HNO3 sehingga tembaga larut dalam HNO3 [1]. Bentuk pentahidrat yang lazim terhidratnya, yaitu kehilangan empat molekul airnya pada 110 °C dan kelima-lima molekul air pada 150 °C. Pada 650 °C, tembaga (II) sulfat mengurai menjadi tembaga (II) oksida (CuO), sulfur dioksida (SO2) dan oksigen (O2) [2].

Tembaga (Cu) merupakan salah satu logam yang paling ringan dan paling aktif. Cu+ mengalami disproporsionasi secara spontan pada keadaan standar (baku). Hal ini bukan berarti larutan senyawa Cu(I) tidak mungkin terbentuk. Untuk menilai pada keadaan bagaimana mereka ditemukan, yaitu jika kita mencoba membuat (Cu+) cukup banyak pada larutan air, Cu2+ akan berada pada jumlah banyak (sebab konsentrasinya harus sekitar dua juta dikalikan pangkat dua dari Cu­­+. Disproporsionasi akan menajdi sempurna. Di lain pihak jika Cu+ dijaga sangat rendah (seperti pada zat yang sedikit larut atau ion kompleks mantap), Cu2+ sangat kecil dan tembaga (I) menjadi mantap [3].

Tembaga (II) sulfat mempunyai banyak kegunaan di bidang industri diantaranya untuk mebuat campuran Bordeaux (sejenis fungisida) dan senyawa tembaga lainnya. Senyawa ini juga digunakan dalam penyepuhan dan pewarnaan tekstil serta sebagai bahan pengawet kayu. Bentuk anhidratnya digunakan untuk mendeteksi air dalam jumlah kelumit. Tembaga sulfat juga dikenal sebagai vitriol biru [4].

Tembaga (II) sulfat merupakan padatan kristal biru, CuSO4.5H2O triklini. Pentahidratnya kehilangan 4 molekul air pada 1100 C dan yang ke lima pada 1500C membentuk senyawa anhidrat berwarna putih. Pentahidrat ini dibuat dengan mereaksikan tembaga (II) oksida atau tembaga (II) karbonat dengan H2SO4 encer, larutannya dipanaskan hingga jenuh dan pentahidrat yang biru mengkristal jika didinginkan. Pada skala industri, senyawa ini dibuat dengan memompa udara melaluicampuran tembaga panas dengan H2SO4 encer. Dalam bentuk pentahidrat, setiap ion tembaga (II) dikelilingi oleh empat molekul air pada setiap sudut segi empat, kedudukan kelima dan keenam dari oktahedral ditempati oleh atom oksigen dari anion sulfat, sedangkan molekul air kelima terikat oleh ikatan hidrogen [4]

Salah satu sifat dari logam tembaga yaitu tembaga tidak larut dalam asam yang bukan pengoksidasi tetapi tembaga teroksidasi oleh HNO3 sehingga tembaga larut dalam HNO3.

3Cu(s)­ + 8H+(aq) + 2NO3-(aq) 3Cu2+(aq)­ + 2NO(g) + 4H2O

Logam tembaga dibuat dari tembaga sulfida (Cu2S) yang dioksidasi dengan oksigen.

Cu2S + 2O2 2CuO + SO2

2CuO + Cu2S SO2 + 4Cu

[1].

Garam tembaga dalam larutan berwarna biru pucat, karena membentuk ion Cu(H2O)42+. Jika larutan ini ditambah amonia akan menghasilkan ion Cu(NH3)42+ yang berwarna biru pekat. Senyawa CuCl2, Cu2Br2, Cu2I2 sukar larut dalam air dengan Ksp masing-masing 1,9.10-7, 5.10-9, dan 1.10-12. Senyawa Cu2O dan Cu2S dapat dibuat langsung dari unsurnya pada suhu tinggi. Kedua senyawa ini cenderung nonstoikiometrik karena dapat pula sebagian membentuk CuO dan CuS [1].

Senyawa-senyawa Cu (I) berwarna putih kecuali oksidasinya merah. Sedangkan senyawa Cu (II) hidratnaya biru dan anhidratnya abu-abu. Senyawa-senyawa Cu (II) lebih stabil dalam larutan. Mereka beracun dan mengion yang berwarna gelap (biru gelap) yang terbentuk dengan larutan amonia berlebihan. Cu digunakan buat kabel/kawat/peralatan listrik; dalam logam-logam paduan; monel, perunggu kuningan, perak jerman, perak nikel untuk ketel dan lain-lain [3].

Secara umum garam tembaga (I) tidak larut dalam air dan tidak berwarna, perilakunya mirip perilaku senyawa perak (I). Mereka mudah dioksidasi menjadi senyawa tembaga (II), yang dapat diturunkan dari tembaga(II) oksida, CuO, hitam. Garam-garam tembaga (II) umumnya berwarna biru, baik dalam bentuk hidrat, padat, maupun dalam larutan air; warna ini benar-benar khas hanya untuk ion tetraakuokuprat (II) [Cu(H2O)4]2+ saja. Batas terlihatnya warna ion kompleks tetraakuokuprat(II) (yaitu, warna ion tembaga (II) dalam larutan air), adalah 500 μg dalam batas konsentrasi 1 dalam 104. Garam-garam tembaga (II) anhidrat, seperti tembaga (II) sulfat anhidrat CuSO4, berwarna putih (atau sedikit kuning) [1].

Larutan amonia bila ditambahkan dalam jumlah yang sangat sedikit terbentuk endapan biru suatu garam basa (tembaga sulfat basa). Bila dalam keadaan basah dibiarkan terkena udara, tembaga (II) sulfida cenderung teroksidasi menjadi tembaga (II) sulfat, dan karenanya menjadi dapat larut dalam air. Banyak sekali panas yang dilepaskan pada proses ini [4].

METODE PERCOBAAN

A. Alat dan Bahan

Alat-alat yang digunakan pada percobaan ini adalah gelas piala 400 ml, gelas ukur 100 ml, gelas ukur 50 ml, neraca, batang pengaduk, pipet tetes.

Bahan-bahan yang digunakan pada percobaan ini adalah H2SO4 pekat,

keping tembaga, HNO3 pekat, aquades dan kertas saring.

B. Cara Kerja

Sebanyak 50 mL air dimasukkan ke dalam gelas piala, ditambahkan 10 mL H2SO4 pekat. 10 gram tembaga dimasukkan, ditambahkan 15 mL HNO3 pekat, kemudian diaduk sehingga semua tembaga melarut. campuran tersebut lalu dipanaskan (setelah gas berwarna coklat tua tidak keluar, sehingga uap tidak lagi berwarna coklat muda). Ketika masih panas campuran disaring (jika masih terdapat tembaga yang tidak melarut). Disimpan larutan sehingga terbentuk kristal, lalu dicuci kristalnya dengan sedikit air, kemudian dilarutkan ke dalam air sedikit mungkin dan kristalkan kembali. Dilakukan terus tahap 9 sehingga kristal bebas dari nitrat. Berat kristal yang diperoleh ditimbang.

HASIL DAN PEMBAHASAN

A. Hasil

No.

Prosedur Percobaan

Hasil Pengamatan

1.

2.

3.

4.

5.

6.

7.

8.

Dimasukkan air ke dalam gelas beker.

Ditambahkan 10 mL H2SO4 pekat.

Ditambahkan 5 gram tembaga.

Ditambahkan 15 mL HNO3 pekat.

Dilakukan pengadukan terus menerus ± 30 menit.

Dipanaskan.

Disaring larutan

Didiamkan dan Ditimbang kristal yang terbentuk

V = 50 mL

Larutan bening dan hangat.

Larutan berwarna bening, dan tembaga tidak larut.

Larutan mendidih, warna larutan biru keruh, dan terdapat uap berwarna coklat.

Tembaga melarut.

Larutan berwarna biru bening, dan terdapat uap putih.

Filtrat berwarna biru.

Kristal berwarna biru (m = 14,18 gram)

Perhitungan

Diketahui :

m Cu = 10 g

m kristal = 14,18 g

BM CuSO4.5H2O = 249,55 g/mol

BA Cu = 63,55 g/mol

Ditanya : Rendemen = …..

Jawab :

Reaksi : Cu2+ + SO42- + 5H2O → CuSO4.5H2O

mol CuSO4.5H2O = mol Cu = 0,1573mol

Massa CuSO4.5H2O

= mol CuSO4.5H2O x BMCuSO4.5H2O

= 0,1573mol x 249,55 gram/mol

=39,2682 gram

Rendemen

=

=

= 36,1 %

B. Pembahasan

Pada percobaan ini dilakukan pembuatan tembaga (II) sulfat, yang kemudian pada akhirnya akan terbentuk kristal tembaga (II) sulfat. Dari 50 mL akuades dimasukkan ke dalamnya asam sulfat pekat, kemudian ditambah dengan tembaga dan asam nitrat pekat. Tujuan dari diperlukannya bahan-bahan tersebut, terutama asam sulfat adalah ditujukan agar terbentuknya garam CuSO4. Persamaan reaksinya adalah sebagai berikut :

Cu + H2SO4 → CuSO4 + SO2 + 2 H2O

Selanjutnya tujuan dari dilakukannya penambahan asam nitrat pekat adalah untuk mengaktifkan tembaga agar ia dapat bereaksi dengan asam sulfat. Dari penambahan asam nitrat pekat ini menyebabkan tembaga melarut dan larutan menjadi berwarna biru keruh serta terdapat uap berwarna coklat. Uap ini terbentuk sebagai akibat tembaga yang ditambahkan atau direaksikan dengan asam nitrat pekat. Karena diperlukan waktu yang tidak sedikit dari reaksi antara tembaga dan asam nitrat pekat, maka dalam proses ini diperlukan pengadukan sampai seluruh tembaga larut. Persamaan reaksinya adalah sebagai berikut:

Cu + 4 HNO3 → 3 Cu(NO3)2 + 2 NO2 + 4 H2O

Larutan yang telah ditambahkan beberapa senyawa tadi, selanjutnya dipanaskan dengan tujuan untuk mempercepat proses reaksi. Selain itu, tujuan dari pemanasan ini adalah untuk memperbesar hasil kali dari ion-ionnya dan memperkecil harga hasil kali kelarutannya (Ksp), sehingga hal ini dapat membentuk endapan kristal. Kristal yang terbentuk inilah yang dinamakan tembaga (II) sulfat. Persamaan reaksi yang secara lengkapnya adalah sebagai berikut:

Cu+ 3H2O + H2SO4+2HNO3 → CuSO4+5H2O+2NO2

Dari pemanasan yang telah dilakukan, terbentuk larutan berwarna biru tua. Untuk memisahkan filtrat dengan endapan (zat pengotor) maka dilakukan penyaringan. Penyaringan tidak dilakukan ketika larutan telah dingin, melainkan dilakukan saat larutan tersebut masih panas. Hal ini ditujukan agar pembentukan kristal yang tidak diharapkan (kristal yang masih mengandung zat pengotor) dapat terhindar. Dari hasil penyaringan diperoleh larutan berwarna biru tua dengan endapan (yang mengandung zat pengotor) berwarna hijau. Selanjutnya, filtrat yang telah disaring didiamkan selama satu hari untuk mendapatkan kristal dari tembaga (II) sulfat. Persamaan reaksinya adalah sebagai berikut:

Cu(NO3)2 + H2SO4 → CuSO4 + 2HNO3

CuSO4 + 5H2O → CuSO4.5H2O

Kristal yang diperoleh setelah didiamkan selama satu hari menghasilkan warna biru, dengan bentuk seperti gel yang lembut. Untuk mendapatkan kristal yang murni, maka dilakukan proses pengeringan. Dari proses ini diperoleh zat yang diinginkan yang bebas dari zat pengotor. Proses yang terjadi adalah sebagai berikut:

Cu2++3H2O+H2SO4+2HNO3→CuSO4.5H2O+ 2NO2

Kristal yang diperoleh, kemudian ditimbang. Dari hasil penimbangan didapatkan massa kristal CuSO4.5H2O sebesar 14,18 gram dan dari hasil perhitungan diperoleh rendemen kristal tersebut sebesar 36,1 %.

KESIMPULAN

Pembuatan kristal CuSO4.5H2O dapat dilakukan dengan mereaksikan logam tembaga dengan asam sulfat pekat dan asam nitrat pekat serta dengan air, proses pembuatan CuSO4.5H2O diperlukan waktu satu hari sampai terbentuknya kristal, kristal CuSO4.5H2O merupakan kristal yang berwarna biru berbentuk gel yang lembut, massa kristal CuSO4.5H2O yang diperoleh dari percobaan ini adalah sebesar 14,18 gram dan rendemen dari kristal CuSO4.5H2O adalah sebesar 36,1 %.

REFERENSI

1. Keenan, Kleinfelter, Wood. 1992. Kimia Untuk Universitas. Jilid 2. Edisi Keenam. Erlangga. Jakarta.

2. Dickey, R. D. 1972. Identification and Correction of Copper Deficiency of Rhododendron Simsi ‘George Lindley Taber’ Cuttings. http://www.google.com.

Diakses, 24 November 2008.

3. Petrucci, Ralph H, 1987, alih bahasa Suminar Ahmadi, Kimia Dasar Prinsip dan Terapan Modern, Jilid 3, Penerbit Erlangga

4. Shevla, G. 1990. Analisis Organik Kualitatif Makro Dan Semimakro. PT. Kalman Media Pustaka. Jakarta.Jakarta.

Thursday, April 2, 2009

DAFTAR NILAI UJIAN AKHIR SEMESTER II TIK
MA MIR'ATUL MUSLIMIEN NGAMBAKREJO
2008/2009


Berikut adalah daftar nilai UJIAN AKHIR SEMESTER II TIK Kelas X tahun 2008/2009. Bagi siswa-siswi yang nilainya dibawah 65 mengerjakan soal UAS TIK SEMESTER II kelas X yang dapat diambil di ruang panitia UAS dan dirimkan ke alamat e-mail oedyphuscomplex@yahoo.co.id paling lambat tanggal 15 Juni 2009. Jika belum jelas dapat menghubungi nomor telepon 116 atau petugas pemadam kebakaran terdekat. Disamping itu Pak Sigit juga minta maaf jika selama mengajar kalian ada tutur kata, tingkah laku atau perbuatan yang kurang berkenan di hati kalian atau bahkan menyinggung dan menyakiti perasaan kalian, Pak Sigit minta maaf yang sebesar-besarnya. Demikian juga jika ada kesalahan-kesalahan kalian sudah Pak Sigit maafkan sebelum kalian melakukannya.
nb : Nilai berbanding terbalik dengan waktu.


DAFTAR NILAI TIK MA MIR'ATUL MUSLIMIEN NGAMBAKREJO
2008/2009

KELAS XA

Nama............................KogPsAf

Adi Kurnianto................................76 76 B
Adib Khoirul Ikhwan................................76 76 B
Andhica Wiratama................................78 76 B
Arief Munandar................................76 76 B
Arum Khasanah................................76 76 B
Ati' Qoniah................................72 76 B
Bella Adiana Gunti................................68 76 C
Diah Retno Argarini................................76 76 B
Dian Agustia Anjarwati................................65 75 B
Dien Rizki Fauziah................................76 76 B
Eka Muttaqin................................75 75 B
Eko Mey Wahyu Widodo................................75 75 B
Eky Dwi Satiyaningtiar................................76 76 B
Fetty Indriani................................75 76 B
Galang Aidytia Putra................................76 78 B
Ika Noormaningtyas................................76 76 B
Intan Hardiyani................................75 76 B
Khoeroni................................78 76 B
Khomaesiyah................................68 70 B
Kumalasari................................68 70 B
Laela Susanti................................66 70 B
Ludia Sulisdriastuti................................72 75 A
Maidatun Qona'ah................................70 70 B
Muhamad Saechul Umam................................66 70 B
Natalia Prasetyaningsih................................67 70 B
Nurul Fitriani................................76 75 B
Nurul Huda Ervina................................78 75 B
Putro Agung Wicaksono................................69 75 B
Selma Lady Diana................................70 75 B
Shokhul Lutfi................................78 78 A
Siti Widati................................72 75 B
Sri Puji Utami................................78 75 B
Susilawati................................78 75 B
Tendi Tri Wiyanto................................68 70 C
Tri Wiranto................................66 70 B
Yanuan Ben Olina................................69 70 B
Yonnika Pratiwi................................72 75 B
Yuliyanti................................74 75 B



KELAS XB


Nama............................KogPsAf

Aisyatur Rohmaniyah................................78 75 B
Aprilia Ainul Fitri................................70 70 B
Ayub Indra Syafi'I................................70 75 B
Bintoro Adhi Setiawan................................74 75 B
Dimas Setya Wardani................................76 75 B
Edi Prabowo................................75 70 B
Ema Darma Wanti................................68 70 B
Emy Widya Paramita................................76 70 B
Eviana Larasati................................78 75 B
Fitri Rohyani................................75 75 B
Gita Puspitasari................................70 70 B
Hisom Jati Prasetyo................................72 70 B
Imma Fadhilah................................72 70 B
Ivana Rizky Amalia................................74 70 B
Kisworini................................75 75 B
Lintang Ratri Wardhani................................70 75 B
Lulus Priyo Utomo................................69 70 B
M.Samsul Rois................................70 75 B
Masruroh................................72 75 B
Miftahul Huda................................68 75 B
Mutmainnah................................70 70 B
Nanang Ragil Saputro................................70 70 C
Naning Hapsari Setiawan................................72 75 B
Nenda Ristasaputra................................70 70 C
Nunik Mardani................................74 75 B
Nurul Koiriyah................................75 75 B
Resti Nika Utami................................79 75 B
Rofiatul Munawaroh................................77 75 B
Roro Suli................................75 70 B
Sis Suronto................................70 70 B
Siti Af'idati................................70 75 B
Sri Zulaikah................................76 70 B
Tri Ayu Dyah Safitri................................67 75 B
Tutik Nurwidyaningsih................................66 75 B
Yanuar Ody Perdana................................72 70 C
Yayuk Puji Lestarining Ayu................................70 70 B
Yefta Hadi Pramana................................70 70 B
Yovita Pitrianingrum................................74 70 B
Zaenal Nur Hidayat................................72 75 C
Miranti Eka Fitri Widyastuti................................73 70 B


KELAS XC

Nama ............................KogPsAf
Adhila Rafik.................................70 70 B
Akhmad Riky Luth Fiyanto.................................66 70 B
Alan Yanuar Israda.................................69 75 B
Alfiatur Rohmaniah.................................70 70 B
Annisa Puteri Handoyo.................................69 70 B
Ari Arwani.................................80 80 A
Ayuk Ratnasari.................................72 75 B
Aziz Moerdiono.................................66 70 B
Bagus Satriyo Wicaksono.................................68 70 B
Duroriyatul Aulya.................................69 75 B
Dwi Nilasari.................................70 75 B
Eko Nurjanah.................................75 75 B
Feti Fatchiyati.................................68 70 B
Fifit Dwi Widyaningrum.................................67 70 B
Ida Yati.................................70 75 A
Ima Rahmawati.................................72 75 B
Ita Purniawati.................................84 80 A
Kelvin Surya Pratama.................................70 70 B
Leli Riski Yanti.................................67 70 B
Lubabul 'Aniq.................................66 70 B
Masriah.................................84 70 B
Melina Sukawati.................................72 70 B
Miftakhul Anwar.................................66 70 B
Mohamad Saeroji.................................68 70 B
Mubayinah.................................85 70 B
Muhammad In'aam.................................64 70 B
Muhammat Taufiq Hermawan.................................65 70 B
Nikmaten Tujza.................................70 70 B
Nur Hayati.................................70 70 B
Satria Adi Perkasa.................................64 70 B
Sekar Handalu Nestri.................................86 70 B
Shunti Amaliya.................................70 70 B
Tjipto Laksono.................................64 70 B
Tulus Lestari.................................68 70 B
Umi Nurhayati.................................66 70 B
Ummi Aula Ulfa.................................72 70 B
Ummi Cholifah.................................70 70 B
Wulan Nurcahyani.................................68 70 B


KELAS XD

Nama ............................KogPsAf

Anis Laila Zulfa Ummi F................................70 75 A
Beno Prasetiyo................................66 75 A
Beny Wahyu Laksono................................67 70 C
Danny Tiarasari................................72 75 B
Decky Zuliariawan................................ 66 70 D
Dewi Setyorini................................70 70 B
Diyah Aprilia................................70 70 B
Emy Tri Frasutila Fitriana................................70 75 A
Florentina Denis Christina................................67 70 C
Hadi Subono................................66 70 B
Imam Syarifudin................................75 75 A
Indra Yuliansyah Adi................................74 75 C
Ismi Sunayawati...............................76 75 A
Jihan Parlina................................76 75 A
Khusnatul Hanifah................................69 70 C
Listyowati................................70 70 C
M.Fatkhur Rozaq................................69 75 B
Maria Ulfah................................70 75 A
Muh Arifin................................72 70 B
Muhammad Fauzi................................72 75 A
Muhammad Rizki Hawari................................69 70 B
Nita Meliasari Ulfah................................72 70 B
Norma Dwi Setyawati................................74 75 A
Okta Veriani................................73 70 B
Rajib Bill Galih Aditya................................70 70 C
Rima Mawarti Edy Putri................................78 70 A
Rizky Nanda Malik Saputra................................73 70 B
Rizky Alif Utama................................75 70 B
Rudatin Eka Rislamiaty................................76 75 A
Siti Musyarofah................................78 70 B
Sri Sumartini................................74 70 B
Sujarwadi................................70 75 A
Tyas Maya Tirani................................77 75 A
Umi Nasaroh................................79 75 A
Umy Maghfiroh................................77 75 A
Yales Yustisia Riana Anmaru................................76 75 A
Yayuk Nursita................................78 75 A
Yordan Maharani Putri................................80 75 A

KELAS XE

Nama ............................KogPsAf

Anik Setiyowati.................................70 75 A
Anna Soraya.................................68 70 B
Ari Tri Winarno.................................84 75 A
Avif Ulinuha.................................83 75 A
Bambang Sasmito Ringrum.................................68 75 A
Dian Isnadhatul Laili.................................72 70 B
Dzirwatul Chamidah.................................68 70 B
Endah Widyawati.................................69 70 B
Erwinda Bharata.................................69 70 B
Fahrunnisa.................................70 70 B
Indria Hartika Rukmana.................................70 75 A
Jayanti Fitri Ratnasari.................................66 75 B
Kartini Apitasari.................................74 75 A
Khoirotun Nisa'.................................76 75 B
Khoirul Huda MS.................................70 70 B
Kusdiyanto.................................74 75 B
Maulina Makhmula.................................68 70 B
Maya Mustika.................................68 75 A
Moh Andrian.................................68 75 A
Muh Rofiul Izzza.................................69 70 B
Muhammad Dzulfa Dzubaidi.................................67 70 B
Nazala Wahyu Febrianto.................................82 75 B
Nida Aulia.................................70 75 B
Novi Iin Safitriani.................................72 70 B
Nur Rohmat Al Hakim.................................66 75 B
Reni Ari Yani.................................66 70 B
Sholida Fridita Sari.................................66 75 B
Siska Prihatin.................................66 70 B
Siti Nur Alimah.................................69 70 B
Siti Zaenab Yulifah.................................73 70 B
Sri Puji Lestari.................................69 75 B
Sukron Hidayat.................................66 75 B
Teguh Santoso.................................69 70 B
Veronica Handayani.................................68 75 B
Wahyu Hidayati.................................67 70 B
Widya Aldella Wahyu HS.................................74 75 B
Winda Setiawan.................................72 75 B


KELAS XF

Nama ..............................KogPsAf
Alien Maulina................................66 75 B
Anas Mustakhim.................................67 70 C
Anik Sofiyanti.................................74 70 B
Azizatut Takhiyah.................................75 70 B
Burhanudin Mey S N.................................70 70 B
Choirin Nisaq.................................70 75 B
Dhanik Novitasari.................................70 70 B
Eric Vernando Virgiantoro.................................76 70 B
Fauzan Ahmad.................................76 70 B
Feni Damayanti.................................70 70 B
Firda Damayanti.................................67 70 B
Hamri Alfian Danu.................................66 75 B
Hanafi Ubaidilla.................................69 75 B
Heru Tri Sutrisno.................................73 70 B
Iin Novitasari.................................75 75 B
Iin Sinwa Mangedaby.................................75 70 B
Iskandar Dzul Qurnain.................................66 75 B
Khahidar Adji Purnama.................................68 70 B
Laiqo Qoliya.................................70 70 B
Malida Hardikaning Tyas.................................73 75 B
Milha Fitri Hawa.................................70 70 B
Moh Budi Ngatiman.................................70 75 B
Monica Lulut Miwahar P.................................70 70 B
Nanda Budiarti.................................74 75 B
Nungki Fajriyatuzzakiyah.................................75 75 B
Nur Shofiatun.................................65 70 B
Restu Haryadi.................................69 75 B
Rini Wiji Lestari.................................70 70 B
Sabilul Falah.................................67 70 B
Salma Hanifah Sholikun.................................67 70 B
Setiyawan Teger Laksono.................................67 70 C
Siska Fitri Handayani.................................72 70 B
Siti Rizqi Nur Safrida.................................64 70 B
Siti Utari.................................68 75 B
Tri Pamujiyanto.................................70 70 C
Wahyu Dwijayanti.................................75 75 B
Widowati.................................78 75 B


KELAS XG
Nama .............................KogPsAf
Ahmadun................................. 70 75 B
Ainun Najib................................. 70 75 B
Angga Wisnu Firmansyah................................. 69 70 B
Anis Fahruni................................. 74 70 B
Ari Fitrian Kurnianto................................. 76 70 B
Ary Puspitasari................................. 70 70 B
Bayu Muntaha................................. 70 75 A
Dede Ana Novita................................. 75 75 A
Dhidik Joko Purnomo................................. 78 70 A
Dian Pertiwi................................. 72 75 B
Dyah Ayu Novitasari................................. 72 75 B
Edi Haryono................................. 67 70 B
Eka Prasetyaning Adi.................................74 70 B
Eko Ali Fahrudin Anwar................................. 68 70 B
Faesal Abdul Haris................................. 70 75 A
Fauziyah Yuniarti................................. 72 75 B
Fitria Nur Kholifah................................. 72 75 B
Fransisca Dessy K................................. 69 70 B
Hari Abriyoko................................. 70 75 B
Ida Purwaningsih................................. 76 75 A
Ikke Widiyawati................................. 77 70 A
Indri Aprilia................................. 76 70 A
Khoirun Nisa................................. 74 70 A
Liamawati Sri Astuti................................. 72 75 A
Muhammad Rudy H................................. 70 70 B
Nur Atikah Indriyani................................. 75 75 A
Pukky Tetralian B N................................. 72 70 A
Putri Dita Paramita................................. 78 70 A
Ririn Rubiatun................................. 73 70 A
Rizqa Laila Putri................................. 73 75 A
Shofiyatun................................. 73 75 B
Siska Andriyani................................. 73 70 B
Varidatul Hidayah................................. 78 75 B
Wahyuningsih................................. 75 75 B
Yi'laa Nurul Imama................................. 73 75 B
Yulia Maharani................................. 72 75 B


Thursday, February 5, 2009





Cara mudah membuat Detergen Bubuk Untuk usaha perumahan Formulanya sebagai Berikut : Dasar perhitungan untuk sekali adonan sebanyak 10 Kg.

Formula 1
1. NP-30 = 15% x 10 Kg = 1,5 kg 
2. Emal-10 = 6,5% x 10 Kg = 0,65 Kg 
3. Soda abu = 6% x 10 kg = 0,8 kg
4. STPP = 3% x 10 kg = 0,3 kg
5. Sodium sulfat = 69,3 % = 6,93 Kg
6. Parfum = 0,2% x 10 kg = 0,20kg = 20 g

Formula 2
1. NP-30 = 14 % = 1,4 Kg
2. Emal-10 = 7% = 0,7 Kg
3. Soda abu = 3% = 0,3 Kg
4. STTP = 3% = 0,3 kg
5. Sodium Sulfat = 70,75% = 7,075 kg
6. Parfum = 0,25% = 0,024 kg = 25 g

Formula 3
1.  NP-30 = 10% = 1kg
2. Emal = 10 = 1kg
3. Soda abu = 5 % = 0,5 Kg
4. STPP = 3% = 0,3 kg
5. Sodium Sulfat = 71,7% = 7,17 kg
6. Parfum = 0,3 % = 0,03 kg =30 g

Sebelumnya sediakan alat-alat dan timbang kadar tersebut sesuai formula

CARANYA 
1. Timbang bahan yang akan diperlukan.
2. Campurkan Emal-10 dan STTP dan aduk hingga rata
3. Kemudian Campurkan farfum dengan soda abu sedikit demi sedikit hingga rata dan hati-hati        jangan sampai berbentuk gumpalan
4. Campurkan adonan No.2 dam No. 3 dan aduk hingga rata
5. Campurkan bahan adonan No. 4 dengan separo sodium sulfat dan adik hingga rata
6. Sisa sodium sulfat dicampur dengan NP-30 dan aduk hingga rata.
7. Tuangkan adonan No. 6 keadonan No. 5 aduk pelan-pelan selama 19 sampai rata
8. Kemudian saring dengan saringan ayakan,dengan cara menambil adonan sedikit demi sedikit 
  dengan gayung sambil diaduk dengan pengaduk kayu.
9.   Aduk adonan yang telah disaring selama 10 menit
10. Cek kerataan campuran dengan mengukur berat jenis. Total waktu yang diperlukan 1 jam 
     untuk membuat 10 kg detergen. Semoga sukses untuk kalangan usaha rumahan. Harga 
    bahan untuk modal hanya Rp.50.000,- semuanya ada di Toko Kimia.

Tuesday, February 3, 2009

Stephen Hawking, The Big Bang, and God
Henry F. Schaefer III


Dr. "Fritz" Schaefer is the Graham Perdue Professor of Chemistry and the director of the Center for Computational Quantum Chemistry at the University of Georgia. He has been nominated for the Nobel Prize and was recently cited as the third most quoted chemist in the world. "The significance and joy in my science comes in the occasional moments of discovering something new and saying to myself, 'So that's how God did it!' My goal is to understand a little corner of God's plan." --U.S. News & World Report, Dec. 23, 1991.
(This article is a transcript of a lecture Dr. Schaefer presented at the University of colorado in the spring of 1994, sponsored by Christian Leadership and other campus ministries. Over 500 students and professors were present.)
Stephen Hawking's bestseller A Brief History of Time is the most popular book about cosmology ever written. The questions cosmology addresses are scientifically and theologically profound. Hawking's book covers both of these implications.
Cosmology is the study of the universe as a whole--it's structure, origin and development. I won't answer all the questions Hawking raises concerning cosmology, but I will try to make comments on many of them. I caution here that you should not confuse cosmology with cosmetology, the art of beautifying the hair, skin, and nails!
Here are some of the questions cosmology seeks to answer (As elsewhere in this lecture, I borrow heavily from astrophysicist Hugh Ross' excellent books The Fingerprint of God and The Creator and the Cosmos.):
Is the universe finite or infinite in extent and content?
Is it eternal or does it have a beginning?
Was it created? If not, how did it get here? If so, how was this creation accomplished and what can we learn about the agent and events of creation?
Who or what governs the laws and constants of physics? Are such laws the product of chance or have they been designed? How do they relate to the support and development of life?
Is there any knowable existence beyond the known dimensions of the universe?
Is the universe running down irreversibly or will it bounce back?
Let me begin with five traditional arguments for the existence of God. It may seem an unlikely starting point for this topic, but I think you'll see as time goes on that these arguments keep coming up. I'm not going to comment right away on whether these arguments are valid or not, but I will state them because throughout astrophysical literature these arguments are often referred to:
The cosmological argument: the effect of the universe's existence must have a suitable cause.
The teleological argument: the design of the universe implies a purpose or direction behind it.
The rational argument: the operation of the universe, according to order and natural law, implies a mind behind it.
The ontological argument: man's ideas of God (his God-consciousness) implies a God who imprinted such a consciousness.
The moral argument: man's built-in sense of right and wrong can be accounted for only by an innate awareness of a code of law--an awareness implanted by a higher being.
The Big Bang
The idea that the universe had a specific time of origin has been philosophically resisted by some very distinguished scientists. We could begin with Arthur Eddington, who experimentally confirmed Einstein's general theory of relativity in 1919. He stated a dozen years later: "Philosophically, the notion of a beginning to the present order is repugnant to me and I should like to find a genuine loophole." He later said, "We must allow evolution an infinite amount of time to get started."
Albert Einstein's reaction to the consequences of his own general theory of relativity appear to acknowledge the threat of an encounter with God. Through the equations of general relativity, we can trace the origin of the universe backward in time to some sort of a beginning. However, before publishing his cosmological inferences, Einstein introduced a cosmological constant, a "fudge factor," to yield a static model for the universe. Einstein later considered this to be the greatest blunder of his scientific career.
Einstein ultimately gave grudging acceptance to what he called "the necessity for a beginning" and eventually to "the presence of a superior reasoning power." But he never did accept the reality of a personal God.
Why such resistance to the idea of a definite beginning of the universe? It goes right back to that first argument, the cosmological argument: (a) Everything that begins to exist must have a cause; (b) If the universe began to exist, then (c) the universe must have a cause. You can see the direction in which this argument is flowing--a direction of discomfort to some physicists.
In 1946, George Gamow, a Russian-born scientist, proposed that the primeval fireball, the "big bang," was an intense concentration of pure energy. It was the source of all the matter that now exists in the universe. The theory predicts that all the galaxies in the universe should be rushing away from each other at high speeds as a result of that initial big bang. A dictionary definition of the hot big bang theory is "the entire physical universe, all the matter and energy and even the four dimensions of time and space, burst forth from a state of infinite or near infinite density, temperature, and pressure."
The 1965 observation of the microwave background radiation by Arno Penzias and Robert Wilson from the Bell Telephone laboratories convinced most scientists of the validity of the big bang theory. Further observations reported in 1992 have moved the big bang theory from a consensus view to the nearly unanimous view among cosmologists: there was an origin to the universe approximately 15 billion years ago.
About the 1992 observations, which were from the COBE (the NASA satellite Cosmic Background Explorer), there was a story on the front page of virtually every newspaper in the world. The thing that the London Times, New York Times, etc. seemed to pick up on was a statement by George Smoot, the team leader from the Lawrence-Berkeley Laboratory. He said, "It's like looking at God." Obviously, this captured the public's attention.
A somewhat more sober assessment of the findings was given by Frederick Burnham, a science-historian. He said, "These findings, now available, make the idea that God created the universe a more respectable hypothesis today than at any time in the last 100 years."
Not everyone was ecstatic about these observations that revealed the so-called "big bang ripples." Certainly, those who had argued so strongly and passionately for a steady-state model of the universe didn't like the interpretation of these results at all--primarily two persons, Fred Hoyle, the British astronomer, and Jeffrey Burbidge, a very distinguished astrophysicist at the University of California at San Diego.
We can begin to get into the philosophical implications of these observations when we assess Burbidge's statement (made during a radio discussion with Hugh Ross) on these things. Burbidge discounts the new experiment. He is a strong advocate still today, in the face of overwhelming evidence, of the steady-state theory. He says these new experiments come from "the first church of Christ of the big bang." I can tell you that my former colleague George Smoot, at the Lawrence-Berkeley Laboratory, took strong exception to this statement. He absolutely insisted his observations were in no way colored by any religious presuppositions.
Burbidge does say something that is true, however. He favors the steady-state hypothesis and claims his view supports Hinduism and not Christianity. That is correct, because a steady-state theory of the universe, were it to be true, would provide some support for the endless cycles taught by Hinduism. The big bang theory is significant evidence against Hinduism.
Hugh Ross, an astrophysicist, has written very persuasively on this topic. He again brings us into the philosophical implications. Ross says that, by definition,
Time is that dimension in which cause and effect phenomena take place. . . . If time's beginning is concurrent with the beginning of the universe, as the space-time theorem says, then the cause of the universe must be some entity operating in a time dimension completely independent of and pre-existent to the time dimension of the cosmos. This conclusion is powerfully important to our understanding of who God is and who or what God isn't. It tells us that the creator is transcendent, operating beyond the dimensional limits of the universe. It tells us that God is not the universe itself, nor is God contained within the universe.
These are two very popular views, which brings us to something very significant metaphysically or philosophically. If the big bang theory is true, then we can conclude God is not the same as the universe (a popular view) and God is not con-tained within the universe (another popular view).
Stephen Hawking has said, in his writings, "the actual point of creation lies outside the scope of presently known laws of physics," and a less well-known but very distinguished cosmologist, Professor Alan Guth from MIT, says the "instant of creation remains unexplained."
I want to quote from a book that I don't recommend. It is by a brilliant physicist, Leon Lederman, a Nobel Prize winner. It is called The God Particle and although the title sounds very appealing, the good information is all in the first paragraph. The rest of it is just a case for the building of the SSC, the Super Conducting-Super Collider, which we now know is not going to be built. Therefore the book is a bit of a Rip Van-Winkle sort of experience! But the first paragraph is wonderful; it's a great summary of what I have said so far:
In the very beginning, there was a void, a curious form of vacuum, a nothingness containing no space, no time, no matter, no light, no sound. Yet the laws of nature were in place and this curious vacuum held potential. A story logically begins at the beginning, but this story is about the universe and unfortunately there are no data for the very beginnings--none, zero. We don't know anything about the universe until it reaches the mature age of a billion of a trillionth of a second. That is, some very short time after creation in the big bang. When you read or hear anything about the birth of the universe, someone is making it up--we are in the realm of philosophy. Only God knows what happened at the very beginning.
That is about all that Lederman has to say about God--in the first paragraph--and that's the end of it. The thing that has made Hawking's book so popular is that he is talking about God from beginning to end.
Stephen Hawking
Hawking is probably the most famous living scientist. His book, A Brief History of Time, is available in paperback and I strongly recommend it. It has sold in excess of 10 million copies, and I think he sold about five million before the paperback version. For a book to sell so many copies is almost unheard of in the history of science writing.
There has been a film made about the book. The film is also good. There has even been a book made about the film. Hawking has a wonderful sense of humor. He writes in the introduction of the second book, "This is the book of the film of the book. I don't know if they are planning a film of the book of the film of the book."
I want to begin by saying something about Stephen Hawking's scientific research. Hawking has made his reputation by investigating, in great detail, one particular set of problems: the singularity and horizons around black holes and at the beginning of time. Now, everyone is sure if you encountered a black hole, it would be the last thing you ever encountered--and that is correct! A black hole is a massive system so centrally condensed that the force of gravity prevents everything within it, even light, from escaping.
Hawking's first major work was published with Roger Penrose, a physicist very famous in his own right, and George Ellis, during the period 1968-1970. They demonstrated that every solution to the equations of general relativity guarantees the existence of a singular boundary for space and time in the past. This is now known as the "singularity theorem," and is a tremendously important finding.
Later, working by himself, in 1974, he began to formulate ideas about the quantum evaporation of exploding black holes, the now famous "Hawking radiation." These are all tremendously important scientific works.
The work most referred to in A Brief History of Time is also the most speculative: the 1984 work with James Hartle, a professor at the University of California at Santa Barbara. Using an elegant vacuum fluctuation model, they were able to provide a mathematical rationalization for the entire universe popping into existence at the beginning of time. This is also called the "universe as a wave function." I need to emphasize that they were using very simple models. Now, while such mathematical exercises are highly speculative, they may eventually lead us to a deeper understanding of this creation event.
Hawking is certainly the most famous physicist in history who has not won the Nobel Prize. This has puzzled people. They automatically assume he has won the Nobel Prize. He has not yet. This is because the Swedish Royal Academy demands that an award-winning discovery must be supported by verifiable experimental or observational evidence. Hawking's work, to date, remains unproved. The mathematics of his theory, however, are certainly beautiful and elegant. Science is just beginning to verify the existence of black holes, let alone verify "Hawking radiation" or any of his more radical theoretical proposals.
My opinion is that within the next year or two we will have firm evidence for the existence of black holes. Unfortunately, I think the person who will get the Nobel Prize will be the observa-tionalist who comes up with its data. So I think Hawking may not get the Nobel Prize soon, even though he's the world's most famous scientist.
Even if some aspects of Hawking's research turn out to be wrong, he will have had a profound impact on the history of scientific thought. Einstein was wrong about all matter of things, especially quantum mechanics, and we still recognize him as one of the three great geniuses of physics.
And God
A Brief History of Time says a lot about God. God is mentioned in this book from beginning to end. So let us try to put Hawking's opinions about God in some sort of a context. The context is that Stephen Hawking made up his mind about God long before he became a cosmologist.
The principle influence in his early life was his mother, Isabel. Isabel Hawking was a member of the Communist Party in England in the 1930's, and her son has carried a good bit of that intellectual baggage right through his life.
By the time he was 13, Hawking's hero was the atheist philosopher and mathematician, Bertrand Russell. At the same age, two of Hawking's friends became Christians as a result of the 1955 Billy Graham London campaign. According to his 1992 biographers, Hawking stood apart from these encounters with "a certain amused detachment." There is nothing in A Brief History of Time that deviates in a significant way from the religious views of the 13-year old Stephen Hawking.
The most important event of his life occurred on December 31, 1962. He met his future wife, Jane Wilde, at a New Year's Eve party. One month later, he was diagnosed with a terrible disease, ALS, amyotrophic lateral sclerosis. He was given two years to live at that time. That was 32 years ago. I have had three friends die of this disease. It's a horrible disease. They lasted two, three, and five years, respectively. By anyone's estimation, Stephen Hawking is a medical miracle.
At this point in his life, 1962, Stephen was by all accounts an average-performing graduate student at Cambridge University. Let me quote from his biographers, White and Gribbon, on this point:
There is little doubt that Jane Wilde's appearance on the scene was a major turning-point in Stephen Hawking's life. The two of them began to see a lot more of one another and a strong relationship developed. It was finding Jane that enabled him to break out of his depression and regenerate some belief in his life and work. For Hawking, his engagement to Jane was probably the most important thing that ever happened to him. It changed his life, gave him something to live for and made him determined to live. Without the help that Jane gave him, he would almost certainly not have been able to carry on or had the will to do so.
They married in July of 1965. Hawking himself has said that "what really made a difference was that I got engaged to a woman named Jane Wilde. This gave me something to live for."
Jane Hawking is an interesting person in her own right. I think she decided early on to get into an academic discipline as far as possible from her husband. She has a doctorate in Medieval Portuguese Literature!
Jane Hawking is a Christian. She made the statement in 1986, "Without my faith in God, I wouldn't have been able to live in this situation;" namely, the deteriorating health of her husband. "I would not have been able to marry Stephen in the first place because I wouldn't have had the optimism to carry me through and I wouldn't have been able to carry on with it."
The reason the book has sold 10 million copies, i.e., the reason for Hawking's success as a popularizer of science, is that he addresses the problems of meaning and purpose that concern all thinking people. The book overlaps with Christian belief and it does so deliberately, but graciously and without rancor. It is an important book that needs to be treated with respect and attention.
There is no reason to agree with everything put forth in A Brief History of Time and you will see that I have some areas of disagreement. It has been said that this is the most widely unread book in the history of literature. I first prepared this material for a lecture in December 1992, because I was asked by a friend in Australia to come and speak on it. He told me, "A great many people in Sydney have purchased this book. Some claim to have read it." So I encourage you to be one of those who have actually read A Brief History of Time.

The Universe: Still Boggling The Minds of 'Finite Creatures' By Robert Roy BrittSenior Science Writerposted: 07:00 am ET12 June 2001
There may be nothing more mind-boggling than the universe. Imagine -- we're halfway through 2001, in the heart of the Information Age, nearly 400 years after the telescope was invented and we don't yet know how big the big house is nor what, if anything, lies beyond.

Science Tuesdays
Visit SPACE.com each Tuesday to explore a new science feature. See the Archive of past Science Tuesday features.
"As much as we have progressed in science, we are still finite creatures with limited conceptual abilities and imperfect observational tools," said James Sweitzer, director of astrophysics education at the American Museum of Natural History's Rose Center for Earth and Space.
Humbling thought. But add one thing: We are highly curious creatures prone to speculation.
That in mind, we wanted to at least pose the questions that we suspect swirl through the minds of all who have ever been curious, who have ever looked up on a dark night and simply wondered.
How old is the universe? Does it have an edge? And, c'mon, truthfully -- How could it all have begun in some "Big Bang" that originated in a spot smaller than the dots under all these questions marks?
For answers, we pestered Sweitzer and Mario Livio, head of the science division at the Space Telescope Science Institute in Baltimore.
What a cosmic can of worms. Turns out even the word "universe" is elusive, having three meanings (two of which depend on whether or not you hit the shift key). So we start with the basics.
What does the word "universe" mean?
The "observable universe," Sweitzer explained, "is the one astrophysicists generally talk about because it's the one open to empirical measurements. In fact it's the only one we can or ever will be able to talk with any certainty about."
He goes on to explain that "universe" (sans the word "observable") is a larger concept that scientists think "conforms to our laws of physics and all the assumptions that go with them." Comprehending this universe, Sweitzer said, "requires a leap of faith into unobservable realms."
Finally, there is "the Universe," which, by virtue of its capital "U," includes "absolutely everything, even possibilities of dimensions, modes and regions that obey laws of physics we don't know or maybe even can't know."
Okay then. If we can't know it, let's move on to the next question.
How did the universe begin?
There is a very simple answer to this question: We don't know. And we may never know.
The leading theory for the formation of our universe is the Big Bang, of course. According to this theory, all the matter and energy in our present observable universe was compressed into a very small area, before, in a nanosecond, it exploded outward and expanded continually until the present time -- and will perhaps do so forever.
Unimaginable as it might seem, the Big Bang theory is tame compared to some recently emerging wilder ideas, speculations that pop up like parallel universes in a vacuum of understanding.
Some cosmologists say our observable universe is one of many that spring forth continually from a series of bubbles. In this scenario, one Big Bang begets another.
Another recently proposed scenario holds that instead of springing forth in a violent instant from a teensy point in space, our universe was created when two parallel membranes collided. These "branes," as theorists call them, would have floated like sheets of paper through a fifth dimension until slamming together and generating energy and heat that led to the same expansion described by traditional Big Bang theory.
This Ekpyrotic Universe theory, as it is called, does not replace Big Bang theory. Instead, it offers an alternative way that the currently observed expansion might have been jump-started.
In any case, the Big Bang theory does not actually explain how the universe began. It assumes that space, time and energy already existed. Accept that rather significant caveat and one can then discuss the leading theory for how our present observable universe came into being.
"It started from an extraordinarily dense and hot state, and it has been expanding ever since," said Livio, of the Space Telescope Science Institute, giving perhaps the world's most concise definition of the Big Bang model. But there's more to point out here, including the fact that "dense" is rather an understatement.
Everything that exists now, at least in the observable universe, was once all packed into a sphere one millionth of a meter across, Sweitzer said. Translation -- too small to see.
"That may seem pretty small, but it's only because of our human perspective," Sweitzer assured us, adding that today's universe is "extraordinarily empty." Imagine, as an example, that the area of our solar system -- with nine planets packed into a region less than 9 billion miles (14.5 billion kilometers) across -- is relatively crowded compared to the vast empty stretches between stars, where nothing but a few molecules hang out.
"So there's lots of room to compact what we already see," Sweitzer said. But there was a trade-off for all this miniaturization, like a car that's cheap to run but cramped to sit in. In the case of the universe, it was heat.
"Mighty hot," as Sweitzer put it. As in 10 degrees with 32 zeros after it.
Over time, the universe expanded, cooling as it did so. This expansion was discovered in the 1920s, when Edwin Hubble found that every galaxy he looked at, in any direction, was racing away from us. In fact, the Big Bang was initially suggested to explain this expansion.
Early on, things were smooth. Real smooth.
But the expansion had a ripple effect of major importance, triggering lumps and bumps in the otherwise uniform fabric of space, which led to the birth of the first galaxies.
The Big Bang theory long ago predicted that an aftereffect of these ripples should exist today, throughout the universe, in a faint glow of radiation called cosmic microwave background radiation. This was confirmed in 1964.